Research Areas


Understanding the Brain

The Centre for Neuroscience was established in the centenary year of IISc with the vision of having experts from diverse fields working together to tackle the challenges of neuroscience. The brain is a fascinatingly complex organ and an inter-disciplinary approach is best-suited to understand the myriad intricacies of brain function. As a testimony to that, the primary faculty at the centre range from biologists & chemists to engineers & physicists. The adjunct faculty comprises researchers from different departments of the institute as well as various clinical centres in Bangalore.

The centre has advanced imaging techniques for visualizing neural function. Multi-photon imaging is used to study neural processes involved in learning and memory formation by Balaji Jayaprakash’s group. Single molecular imaging at the nanoscale level is also in the pipeline. Deepak Nair’s group will be able to use it to find out how synapses (junctions between two neurons) function.

Neurodegenerative disorders like Alzheimer’s disease, Parkinson’s disease etc. currently have no cure and contribute substantially to the world’s disease burden. Nerve cell regeneration post-injury is analyzed by Naren Ramanan’s lab to further our knowledge about the regenerative capacity of the nervous system.

Fundamental cognitive processes like neural control of action and neural mechanisms of object recognition are studied using electrical recordings from the brain, behavioral experiments and computational approaches. Work done by Aditya Murthy’s group in understanding these mechanisms will help comprehend the pathogenesis in conditions where motor control is compromised, resulting in motor abnormalities e.g. Parkinson’s disease.

Kavita Babu’s laboratory uses the small free-living nematode, Caenorhabditis elegans to understanding the molecular mechanisms underlying synaptic function. They are trying to get insight into the signaling role of cell adhesion molecules at the neuromuscular junction and are also interested in understanding the molecular basis of various locomotory behaviors in C. elegans. Tools and techniques used in Kavita’s lab include genetics, molecular biology, imaging experiments, behavioral assays optogenetics and CRISPR-Cas9 based gene modifications.

Stepping barefoot on a pin is excruciatingly painful and evokes an intense and immediate physical reaction as well as an emotional response. We rub our feet where it hurts, we scream in pain, we move away from the spot to avoid experiencing the pain a second time. We also remember the spot on the floor where the pin was, and we try to avoid walking there again until we know there are no more pins lying around. In essence, all of our physical and mental capacities are overtaken momentarily by a relatively inconsequential event. Arnab Barik’s group seeks to understand how small groups of neurons in the brain are able to drive specific aspects of such defensive behaviours. How do these neurons receive the painful information? What are the molecular characteristics of these neurons? What are their anatomical architectures? How do these neurons communicate with the rest of the nervous system? Arnab Barik’s lab intends to answer these questions by taking advantage of molecular and optical tools to manipulate behaviour, map circuits, and record neural activity in mice.

When it comes to object recognition, no computer algorithm, as of today, matches human performance and yet, very little is known about the processes using which the brain performs object recognition. S P Arun’s lab is tackling this puzzle. Supratim Ray’s work on how we focus our attention – we manage to ignore much of the information about the external world the brain receives from the sense organs, focussing mostly on interesting and relevant details. Attention disorders occur if such control malfunctions.

Sridhar Devarajan’s group studies how cognitive phenomena, such as attention and decision making, emerge in the brain. For this they use neuroimaging (including functional MRI and EEG) as well as neurostimulation (TMS, tACS) in human participants performing complex attention tasks.

Srikanth Padmala’s group focuses on understanding how emotional and motivational factors influence perception and cognition at multiple levels: brain, behavior and physiology. To probe these interactions, his lab uses behavioral paradigms in combination with high-resolution functional MRI and physiological skin conductance recording. A deeper understanding of brain mechanisms underlying cognitive-emotional interactions will potentially help us better identify the information processing anomalies in mental disorders such as anxiety, depression, and addiction, and help improve treatment strategies.

We take for granted our ability to solve almost any complex task through consistent and diligent practice – be it learning how to ace a tennis serve or plan an optimal chess move. Yet we understand very little about how our brains pull off these remarkable feats of learning that surpass the capabilities of any extant computer algorithm. Ashesh Dhawale’s group seeks to understand the neural mechanisms underlying the learning of complex behaviors by taking advantage of high-throughput automated methods to train, record and manipulate neural activity in behaving rodents.

The young and growing centre has still many paths to traverse, but one can certainly hope that with such a vibrant interdisciplinary and collaborative effort, the research at the Centre for Neuroscience will unravel some of the many mysteries of the human brain.

See also


Meenakshi Pramod Kumar won the best lightening talk award in Synapse meeting jointly organized by IISER Tirupathi, IISER Thiruvananthapuram and author cafe.
6 Jan 2022

Meenakshi Pramod Kumar is a joint winner of the Mihir Chowdhury Fellowship for 2021.
6 Jan 2022

Live cell super resolution imaging by radial fluctuations using fluorogen binding tags
25 Jan 2019

Sachin Deshmukh joined the board of reviewing editors of eLife
29 Jan 2019

View all