Multiplicative mixing of object identity and image attributes in single inferior temporal neurons

N. Apurva Ratan Murty1,2 and S. P. Arun1,2

*Centre for Neuroscience, Indian Institute of Science, 560012 Bangalore, India

Edited by Thomas D. Albright, The Salk Institute for Biological Studies, La Jolla, CA, and approved February 27, 2018 (received for review August 14, 2017)

Object recognition is challenging because the same object can produce vastly different images, mixing signals related to its identity with signals due to its image attributes, such as size, position, rotation, etc. Previous studies have shown that both signals are present in high-level visual areas, but precisely how they are combined has remained unclear. One possibility is that neurons might encode identity and attribute signals multiplicatively so that each can be efficiently decoded without interference from the other. Here, we show that, in high-level visual cortex, responses of single neurons can be explained better as a product rather than a sum of tuning for object identity and tuning for image attributes. This subtle effect in single neurons produced substantially better population decoding of object identity and image attributes in the neural population as a whole. This property was absent both in low-level vision models and in deep neural networks. It was also unique to invariances: when tested with two-part objects, neural responses were explained better as a sum than as a product of part tuning. Taken together, our results indicate that signals requiring separate decoding, such as object identity and image attributes, are combined multiplicatively in IT neurons, whereas signals that require integration (such as parts in an object) are combined additively.

D espite tremendous advances in computing, object recognition remains an extremely challenging problem (1–3). This is, in part, because the same object can produce images that vary in size, position, orientation, and depth depending on its location relative to the observer. As a result, the image impinging on the retina contains signals unique to the identity of an object mixed with signals related to its specific image attributes (i.e., its image size, image position, viewpoint, etc.). How does the brain represent object identity and image attributes so as to enable efficient recognition?

Efforts in understanding this question have focused on the inferior temporal (IT) cortex in the monkey, an area critical for object recognition (4–6). Early proposals focused on the existence of highly invariant (grandmother) cells that encode object identity while discarding all image attributes (7). This idea has largely been discredited, because most IT neurons are modulated by both object identity and attributes, such as position and size (8–10). This has recently been reconfirmed by the fact that neural activity in IT can be used to decode object identity across changes in attributes (11–13) as well as the image attributes themselves (13, 14). Recent studies have shown that the same cells are strongly modulated by both object identity and image attributes (15, 16) and that they also maintain their object preference across size, position, and orientation (16). These findings show that both object identity and image attribute signals are encoded independently by IT neurons but do not specify how they might be combined or what would be an efficient way to do so.

We compared two distinct mechanisms by which these signals might be combined: additively or multiplicatively. Although the sum and product are closely related, we reasoned that this subtle difference can have large functional consequences for how the underlying signals can be decoded. For instance, when two signals are added, a small signal might modulate the sum much less than a large signal, making the smaller signal difficult to decode. In contrast, when signals are multiplied, a small signal can modulate the product as effectively as a large signal, allowing both signals to be easily decoded.

We tested these possibilities by recording from IT neurons using natural objects sampled across a variety of viewing conditions. In all cases, neural responses were accurately explained as a product rather than sum of tuning for object identity and tuning for image attributes such as size, position, and viewpoint. By comparing the information available with additively and multiplicatively mixed responses, we found that multiplicative mixing yielded better decoding of both object identity and attributes. This multiplicative mixing was absent both in low-level vision models as well as in deep convolutional neural networks, but it tended to increase across successive layers of these networks. This property was unique to invariances: when tested with objects created by combining parts, neural responses were better explained as a sum (not product) of part tuning.

Results

We compared two specific ways according to which neurons might combine object identity and image attribute signals: adding or multiplying them. To illustrate these possibilities, consider two simulated neurons with identical tuning for objects and image attributes (say size). In the first neuron, the response to a particular object \(o_1\) presented at a particular size \(s_2\) would be \(r(o_1,s_2) = x_o(o_1)x_s(s_2)\), where \(x_o\) and \(x_s\) represent object and size tuning, respectively. Thus, its responses combine object and size tuning multiplicatively (Fig. 1A). In the second neuron, its response is given by \(r(o_1,s_2) = x_o(o_1) + x_s(s_2)\); in other words, its responses combine object size and tuning additively (Fig. 1B). It can be seen that multiplying these signals results in more selective responses than when adding them and therefore, leads to improved decoding.

Significance

Vision is a challenging problem because the same object can produce a variety of images on the retina, mixing signals related to its identity with signals related to its viewing attributes, such as size, position, rotation, etc. Precisely how the brain separates these signals to form an efficient representation is unknown. Here, we show that single neurons in high-level visual cortex encode object identity and attribute multiplicatively and that multiplying signals so allows for better decoding of each signal.

Author contributions: N.A.R.M. and S.P.A. designed research, performed research, analyzed data, and wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1Present address: McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139.
2To whom correspondence should be addressed. Email: sparun@iisc.ac.in.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714287115/-/DCSupplemental.
better decoding of both signals. To quantify this, we trained a linear classifier on the response of each simulated neuron to decode object identity or attribute (Methods). Across many randomly chosen tuning functions, we obtained consistently better decoding from neurons with multiplicative mixing compared with additive mixing (Fig. 1C). When the underlying object and size tuning are unknown, these can be estimated by recording the neural response to many objects across many sizes. This allows us to ask whether the complex response properties of IT neurons can be explained by additive or multiplicative mixing.

We hypothesized that IT neurons might combine signals multiplicatively when they require independent decoding but additively when they require signal integration. We tested this hypothesis across five experiments, which are summarized in Fig. 1D. In experiments 1–4, we tested IT neurons on images of objects varying in size, position, in-plane rotation, and in-depth rotations. In experiment 1, we investigated neural responses to images of objects varying along a number of identity-preserving attributes: size, position, in-plane rotation, and in-depth rotations about the y axis. In experiments 2–4, we investigated in-depth rotations in greater detail for objects (experiment 2), cardinal axis rotations (experiment 3), and faces (experiment 4). Across all experiments, neural responses were explained better as a product (not sum) of tuning for object identity and attributes. In experiment 5, we tested IT neurons using two-part objects. Here, we predicted that part signals will require integration and therefore, combine additively.

Object Tuning Across Multiple Image Attributes (Experiment 1). Here, we recorded the responses of 127 neurons to objects with balanced changes in size, position, orientation (i.e., in-plane rotation), and viewpoint (i.e., rotations in depth). The response of a representative IT neuron is depicted in Fig. 2A for all objects across all image attributes. In the resulting color map, strong responses along a column indicate that the neuron prefers a particular object across all attributes, and strong responses along a row indicate preference for a particular attribute (size/position/rotation/view) across all objects. These patterns, in turn, indicate separable tuning for objects and their image attributes. To quantify how combined tuning for object identity and image attribute can be predicted by individual tuning for identity and tuning for attributes, we fit a multiplicative model to the observed responses (Fig. 2B). To avoid overfitting, we used one-half of all trials to estimate separate tuning for object identity and attribute signals (Methods), generated a predicted response for objects across attributes, and compared it with the observed response on the other one-half of the trials. For this neuron, we obtained an excellent correlation between observed and predicted responses ($r = 0.86, P < 0.00005$) (Fig. 2C) that was as good as the consistency of its firing across two halves of trials ($r = 0.80 ± 0.03$). Other examples of observed responses and multiplicative model fits are shown in Fig. 2D.

This pattern was true across the entire population as well: multiplicative model predictions were correlated with observed responses (average correlation: $r = 0.55 ± 0.19$ across 112 neurons with a significant split-half correlation) across a majority of cells (108 of 112 cells showed a significant correlation, $P < 0.05$). This relatively low model correlation could stem from noisy neural firing or from systematic variations in the response that cannot be explained by the model. To assess this possibility, we reasoned that the upper bound for any model derived from odd trials to predict the firing rate on even trials would simply be the degree to which odd trials themselves predict even trials. Therefore, we calculated a normalized correlation for each neuron, wherein we divided the model correlation by the split-half correlation. The normalized correlation for the multiplicative model was close to 1, indicating that it explains all of the explainable variance in the response (Fig. 2E) (normalized correlation, mean ± SD: $1.10 ± 0.26$ across 112 neurons with a significant split-half correlation; values larger than 1 typically came from neurons with low split-half correlation). This high degree of fit persisted even on assessing each attribute separately (normalized correlation, mean ± SD: $1.07 ± 0.18$, $1.05 ± 0.25$, $1.02 ± 0.19$, and $1.02 ± 0.23$ for size, position, rotation, and view, respectively). This high degree of fit was present in both early and late stages of the neural response (normalized correlation, mean ± SD: $0.99 ± 0.44$ for firing rates during 0–100 ms, $1.09 ± 0.22$.
for firing rates during 100–200 ms), suggesting that multiplicative separability remains stable over time. Thus, the multiplicative model explained virtually all of the systematic variation in the neural firing.

To be sure that the multiplicative model was indeed the best model, we compared it with several alternative models. The primary alternative was an additive model, in which object and image attribute tuning add instead of multiply. We note that this model is difficult to distinguish from the multiplicative model, because the sum and product of two numbers always covary: for instance, the sum and product of two sets of 100 numbers generated using a Poisson process with mean 10 spikes per 1 s are strongly correlated ($r = 0.98$, $P < 10^{-15}$). Nonetheless, the sum and product of two numbers produce subtly but quantitatively different predictions, using which they can be distinguished, particularly when the numbers are disparate. Indeed, the normalized correlation of the additive model was slightly but significantly worse compared with the multiplicative model (Fig. 2E). Likewise, on calculating the residual error of the two models, the multiplicative model produced smaller residual errors for large/small observed firing rates (Fig. 2F). Finally, the advantage of the multiplicative model over the additive model was apparent at all levels of firing reliability (SI Text).

We also considered an object-only model, which considered only object preferences and discarded all image attribute modulation. This model yielded considerably worse fits to the data, indicating that very few neurons were perfectly invariant (Fig. 2E and F). Finally, we considered an attribute-only model, which considered only image attribute preferences and discarded all object identity modulation. This model too yielded considerably worse fits compared with the multiplicative model (Fig. 2E and F).

Do Fully Invariant Cells Carry More Information? The above results show that, on average, the response of IT neurons can be explained using a product of identity and image attribute tuning. However, there may be smaller subgroups of invariant cells that may be the neural substrate for invariant object recognition. To evaluate this possibility, we performed an ANOVA on the firing rate across trials of each neuron with object identity and attribute as factors. A majority of all neurons (83 of 127 or 65%) were modulated by both

![Graph](image-url)
identity and attribute, whereas only 18% of cells (23 of 127) were modulated only by object identity but not by attribute (i.e., potentially invariant). Are the invariant cells more selective (and therefore, more informative) for objects compared with the cells with both identity and attribute effects? To assess this possibility, we measured the sparseness of each neuron across objects (Methods) and compared the two groups of cells. Cells modulated by both identity and attribute were more sharply tuned for objects compared with the cells modulated only by identity (average object sparseness: 0.06 for 23 object-only cells; 0.12 for 83 object and attribute cells, \(P < 0.005 \), rank sum test on sparseness). Likewise, cells modulated by both identity and attribute yielded more accurate decoding of object identity than cells modulated only by identity (decoding accuracy: 43% for cells with identity and attribute modulation, 22% for object-only cells, \(P < 0.0005 \) using bootstrap sampling; chance performance = 10%). Thus, cells with multiplicative modulation of identity and attribute are the majority of cells in IT cortex and are strongly selective for object identity.

The above results are based on testing neurons using object images that varied along four attributes: size, position, orientation, and viewpoint. In doing so, we equated objects to have the same overall size, position, etc. before systematically changing these attributes (we note that equating viewpoint is nontrivial; see below). To confirm that equating attributes across objects was indeed important, we shuffled the responses of each object so that objects are no longer equated for their attributes. Shuffled responses were fit equally well by the object-only model as by the multiplicative model (normalized correlation, mean \(\pm SD: 0.96 \pm 0.27 \) for multiplicative model, 0.98 \(\pm 0.32 \) for the object-only model, \(P = 0.24 \), sign rank test across 112 cells). Thus, equating object attributes was critical to establish the multiplicative separability of identity and attributes.

Does Multiplicative Separability Lead to More Invariant Population Decoding? So far, we have found a relatively small but significant advantage of the multiplicative model over the additive model in single neurons. The simulation in Fig. 1 already shows that even a subtle difference in a single neuron can be functionally relevant by enabling better decoding. However, this simulation was based on taking arbitrary tuning functions and combining them. We, therefore, sought to confirm whether this decoding advantage for multiplicative mixing would hold given the range of stimulus selectivity observed in IT neurons.

To investigate this issue, we created two groups of simulated neurons derived from the observed neural responses as depicted in Fig. 3A. In the first group, we took the multiplicative model prediction for each observed neuron and generated noisy firing rates for eight trials (same as in the observed data), each using a Poisson process. In the second group, we took the additive model predictions for each neuron and then generated noisy firing rates using a Poisson process. We then compared the ability of linear classifiers to decode object identity from the additive and multiplicative neural populations. We found that the multiplicative population had a decoding accuracy that was substantially higher than the additive population (Fig. 3B) (average accuracy for object decoding: 96 and 87% for the simulated multiplicative and additive populations, respectively; additive accuracy was never larger than multiplicative accuracy across 1,000 bootstrap samples obtained by repeatedly sampling 50 randomly chosen cells; thus, \(P < 0.001 \)). This was true for image attribute decoding as well (average accuracy: 65 and 52% for multiplicative and additive populations, respectively; additive accuracy exceeded multiplicative accuracy in 6 of 1,000 bootstrap samples; thus, \(P = 0.0005 \)). Thus, multiplicative separability at the single-neuron level leads to improved decoding of both object identity and image attribute at the level of the entire population.

Do Results Generalize to Other Objects and Image Attributes (Experiments 2–4)? The results of experiment 1 were based on testing objects across image attributes, such as size, position, orientation, and viewpoint. Of these, size, position, and orientation are straightforward image transformations, since they leave image features fundamentally unchanged. As a result, it was simple to equate objects for their size, position, or orientation. However, viewpoint changes are qualitatively different: when an object is rotated in depth, its features can appear, disappear, compress, or expand. This makes it nontrivial to equate objects across changes in viewpoint. This, in turn, raises the possibility that the multiplicative separability observed in experiment 1 was driven largely by changes in size, position, and orientation and not by changes in viewpoint. We therefore systematically investigated this issue in experiments 2–4.

In experiment 2, we tested 113 IT neurons on objects across rotations about the y axis. We chose y-axis rotations as a starting point, because they are the most frequently encountered in natural vision (for other axis rotations, see below). To equate objects across viewpoints, we designed objects to all have a single impoverished view and sampled viewpoints on either side (Fig. 4). The responses of an example IT neuron are illustrated in Fig. 4A. This neuron responded strongly to the sideways profile view of all objects and least of all to the impoverished view, which may be expected, since very few image features are visible at the impoverished view. Importantly, its response was predicted extremely well by the multiplicative model (Fig. 4B) with a strong correlation (\(r = 0.90 \), \(P < 0.0005 \)) (Fig. 4C). This model fit was close to the split-half reliability of its response (mean \(\pm SD \) of split-half correlation: 0.85 \(\pm 0.04 \)). The observed responses and the multiplicative model predictions for two other IT neurons are shown in Fig. 4D. It can be seen that the multiplicative model produces excellent fits to the neural responses. This was true in general across neurons (Fig. 4E) (normalized correlation, mean \(\pm SD: 0.97 \pm 0.25 \) across 83 cells with a significant split-half correlation). Thus, the multiplicative model explained nearly all of the systematic variation in neural firing. As before, we compared the performance of the multiplicative model across neurons with the performance of an additive model, an object-only model, and a view-only model. The performance of the multiplicative model was significantly better than the other models both in terms of normalized correlation (Fig. 4E) as well as using residual error calculated on large/small firing rates (Fig. 4F).

Next, we compared the invariant cells (i.e., only object identity effects) with cells that showed both identity and view effects. As
before, cells with both effects were the greatest in number (52 of 113; i.e., 46%) and were more selective for objects compared with the invariant cells (average sparseness: 0.16 across 52 cells with object and view effects, 0.07 across 32 cells with object-only effects; $P < 0.0005$, rank sum test on sparseness values across cells). Likewise, object identity could be decoded better from cells with object and attribute modulation compared with cells with object-only effects (decoding accuracy: 54% for cells with both effects, 49% for object-only cells, chance = 12.5%, $P = 0.01$ using bootstrap sampling). Thus, cells modulated by both identity and image attribute convey more information about object identity than the invariant cells with object-only effects.

Can Objects Really Be Equated Across Viewpoints? Our results so far show that, for objects rotated about a single impoverished view, IT neurons show multiplicative separability for identity and viewpoint. However, can objects be equated for viewpoint at all? To investigate the effect of object structure further, we recorded the responses of the same neurons to objects with two impoverished views instead of only one. These objects had qualitatively different viewpoint relations as measured using population neural dissimilarity (SI Text). This, in turn, implies that including these objects will lead to a breakdown of multiplicative separability. Indeed, as predicted, neural responses were multiplicatively separable for objects with consistent viewpoint relations but not for objects with inconsistent viewpoint relations (SI Text).

In experiments 1 and 2, we investigated objects across rotations about the y axis. In experiment 3, we investigated objects across rotations about all three cardinal axes (x, y, and z). Once again, neural responses were multiplicatively separable (SI Text).

In experiment 4, we tested IT neurons for faces across many views. We selected faces as a special case, where equating objects...
across views is straightforward. Here too, the multiplicative model yielded better fits to the data (SI Text).

Model Performance Across Experiments 1–4. To summarize, we have tested IT neurons on four diverse object sets: objects varying along multiple attributes (experiment 1), objects across y-axis rotations (experiment 2), objects across all cardinal axis rotations (experiment 3), and faces across viewpoint changes (experiment 4). We combined the model performance for the multiplicative model, additive model, object-only model, and attribute-only model across all experiments to obtain a global summary of our findings and compare with computational models. The multiplicative model yielded consistently outperformed all models both in terms of normalized correlation (Fig. 5A) as well as in terms of residual error (Fig. 5B). We conclude that object identity and image attributes are multiplicatively separable at the level of IT neurons.

Heterogeneity of Signal Mixing in Single Neurons. So far, we have compared the aggregate behavior of the multiplicative and additive models, but there could be considerable variability across single neurons. We investigated this possibility in several ways. First, we sought to compare the multiplicative and additive models for each neuron to ascertain the numbers of neurons that favored each model. To do so, we compared the residual error across stimuli for each neuron. The residual error of the two models was significantly different ($P < 0.05$, sign rank test) in only 46 of 307 cells across experiments 1–4. This relatively small number of cells detected is not surprising given the tight correlation between sums and products in general as well as the limited numbers of trials per stimulus. However, 82% (38 of 46) of these cells had a smaller residual error for the multiplicative model, and this fraction was significantly different from the 50:50 split expected by chance ($P < 0.00005$, χ^2 test). Thus, while there are individual cells that favor additive mixing, such cells are relatively few in number and are outnumbered by cells that favor multiplicative mixing.

Second, we considered the possibility that individual neurons might implement a broad continuum of signal integration ranging from additive to multiplicative mixing of identity and attribute signals. To investigate this possibility, we fit a mixed model, in which the response R is given by $R = a*R_m + m*R_a$, where R_m and R_a are the additive and multiplicative predictions and a and m are scalars representing their contributions. A purely multiplicative response would have $a = 0$, whereas a purely additive response would have $m = 0$. On fitting this model, the multiplicative term was significantly larger than the additive one in experiments 1–4 (SI Text). Furthermore, the mixed model yielded fits that were better than the additive model but no better than the multiplicative model. Thus, while there is variation across cells in the extent of additive vs. multiplicative signal mixing, the aggregate tendency in the IT population favors multiplicative mixing of object identity and image attribute signals.

Multiplicative Separability in Computational Models. The above findings show multiplicative separability of object identity and attributes in IT neurons for identity-preserving attributes but not identity-altering transformations. However, this could be trivially inherited from low-level visual areas, or alternatively, it could be an emergent property in high-level visual cortex. To address this issue, we tested two computational models on the images used in experiments 1–4. The first model was a V1 model (13, 17). If V1 model units show multiplicative separability, then it is likely to be inherited by downstream visual areas. The second model was a deep convolutional neural network optimized for object classification (18). Such deep networks have been extremely successful in predicting response properties of neurons along the ventral stream (19–21). Of particular interest to us was whether deep neural network units would show an increasing multiplicative separability, which would indicate that this is a computational requirement for invariant object recognition.

We present the combined performance of all models here for simplicity (individual experiments are in SI Text). Without fitting...
these models to the IT data, we analyzed individual units in these models exactly as we did with the IT data. As before, we fit multiplicative, additive, object-only, and attribute-only models to the responses of each model unit and concatenated model performance on stimulus sets across all four experiments. With IT neurons, we had responses across many trials for each image, and therefore, we were able to use the more robust split-half cross-validation procedure. However, since model activations do not vary across trials, we used leave-one-out cross-validation to evaluate model performance. As a result, while model performance in absolute terms cannot be directly compared with IT neurons, it was possible to evaluate whether the response of each unit can be explained best using additive, multiplicative, object-only, or attribute-only models.

For the V1 model, we found that individual unit activations were explained best using an additive model (Fig. 5C) and not a multiplicative model. Thus, low-level visual representations show additive rather than multiplicative separability. We found a similar result with the deep neural network. Individual units responses to objects across attributes were better explained using an additive model rather than the multiplicative model (Fig. 5D). However, both the additive and multiplicative models performed increasingly better across layers (SI Text), suggesting that overall separability (regardless of type) is an emergent property across layers in the network.

How does the multiplicative separability observed in IT neurons compare with that observed in computational models? To assess this possibility, we calculated an index of multiplicative separability on the full response of each neuron (Methods) that represents the fraction of the overall variance in the response that is accounted for by the multiplicative model. Across experiments, multiplicative separability was largest for IT neurons followed by deep network units and smallest for V1 model units (Fig. 5E). Thus, IT neurons have the most efficient representation in terms of multiplicative separability. Interestingly, the deep neural network had greater multiplicative separability compared with the V1 representation, but it was still smaller than the separability in IT. We propose that separability in general and multiplicative separability in particular are desirable properties for an invariant object representation.

Do Parts in an Object Also Combine Multiplicatively (Experiment 5)?

In experiments 1–4, we have shown that neural responses to objects across varying attributes can be explained using a product but not sum of tuning for objects and attributes. In experiment 5, we asked whether such multiplicative separability would occur for objects with discrete parts. Our motivation was that part signals are more likely to be integrated rather than being constrained for independent decoding, like in the case of objects and attributes. We therefore surmised that part signals might combine additively rather than multiplicatively.

To investigate these issues, we recorded the responses of 180 IT neurons to objects created by combining two parts on either end of a stem in a combinatorial manner (Methods). The responses of an example IT neuron (using firing rates in a 50- to 250-ms window) to the full set of objects are shown in Fig. 6A. It can be seen that the neuron responds strongly to all objects sharing a particular part. The predictions of the additive model (Fig. 6B) were as strongly correlated with the observed response ($r = 0.6$) (Fig. 6C) as the reliability of firing itself (split-half correlation, mean $\pm SD$: $r = 0.57 \pm 0.06$). Thus, the additive model captured nearly all of the systematic variation in neural firing. The observed and predicted responses of two other example neurons are shown in Fig. 6D.

This pattern was true across the neural population: the additive model explained nearly all of the systematic variation in firing as evidenced by a highly normalized correlation (Fig. 6E). Interestingly, the additive model outperformed all other models both in terms of overall match to the data (Fig. 6E) as well as in terms of residual error for large/small firing rates (Fig. 6F). Thus, neural responses to objects with discrete parts are explained as a sum—not product—of part signals.

Discussion

Here, we have shown that object identity and attribute signals combine multiplicatively in IT neurons across diverse objects varying along many attributes. This multiplicative separability was efficient in that it led to better object decoding than additive separability. It was nontrivial in that low-level and deep neural network representations show additive rather than multiplicative separability. It may be an emergent property for invariant recognition, since separability increases across layers of deep neural networks optimized for object recognition. Finally, multiplicative separability did not always occur: part signals within an object combine additively in IT neurons rather than multiplicatively. Together, these findings suggest that signals that require separate decoding might combine multiplicatively in IT neurons and that signals that require integration combine additively. Below, we review our findings in the context of the existing literature.

Our finding that identity and attribute signals combine multiplicatively is consistent with frequent observation that IT neurons maintain their object preference across size and position (8, 9, 22) and across viewpoint (13, 22). Our finding that part signals combine additively in IT neurons is consistent with similar observations made for discrete parts (23) and shape/color (24). It is also consistent with the fact that IT neurons preserve their shape tuning across textures (25, 26). It does not agree, however, with the finding that face features combine multiplicatively in face cells (27)—whether this is specific to faces or face cells remains an interesting open question. Except for this last study, most others have not explicitly compared multiplicative and additive mixing as we have done. Distinguishing these two possibilities is nontrivial, because the sum and product of two numbers are always correlated and cannot be distinguished primarily when the two numbers are disparate. Even in our study, multiplicative and additive models were only slightly but significantly different in their predictions. However, we have additionally shown that these subtle differences at the single-neuron level lead to substantial differences in decoding object identity or attribute for the neural population as a whole (Fig. 3).

Our observation of multiplicative separability depended critically on equating attributes across objects. This was straightforward for size, position, and orientation but nontrivial for in-depth rotations. For viewpoint, we found multiplicative separability only when objects have consistent viewpoint relations, such as when they are aligned to an impoverished view, but not when they have inconsistent viewpoint relations (SI Text). This is concordant with the idea that objects may undergo viewpoint transitions as they are rotated in depth (28). However, we have explicitly evaluated viewpoint relations using neural dissimilarity rather than using abstract shape features. We propose that evaluating neural or perceptual dissimilarity between views can be a powerful approach to studying viewpoint relations between and across objects.

Our finding that object/attribute signals combine multiplicatively but part/part signals combine additively raises several interesting questions. First, why might this occur? We have shown that multiplying signals allows for efficient decoding of either signal. This might be useful for decoding object identity and attribute separately. However, additive mixing might be more useful when object parts have to be integrated to represent whole objects (24). Alternatively, it could be that object attributes, being irrelevant variations, are combined multiplicatively, whereas parts, being relevant variations, are combined additively. Distinguishing between these possibilities will require training animals on categorizing stimuli with relevant and irrelevant features. Second, why is there heterogeneity at the single-cell level? While we have observed that the average tendency across neurons favors multiplicative mixing, there was considerable heterogeneity in signal mixing (SI Text). It is possible that there are neurons that perform additive mixing or even more complex tuning functions with activity that becomes relevant in...
We recorded from the left IT cortex of two macaque monkeys. The stimuli consisted of images with varying parts (experiment 5). Objects with varying parts (experiment 5). (A) Observed responses for an example IT neuron for a set of objects with varying right parts (along columns) and left parts (along rows). Individual parts corresponding to each row and column are depicted but were never shown in the experiment. An example object is depicted in the first row, second column. FR, firing rate. (B) Predicted responses for the additive model for this neuron. (C) Observed response plotted against the additive model prediction across all 49 stimuli, with conventions as before. (D) Observed responses and multiplicative model predictions for two other IT neurons. (E) Mean and SEM of model correlation (normalized by firing reliability) across neurons for the multiplicative (red), additive (black), object-only (blue), and attribute-only (green) models. Asterisks indicate statistical significance on a Wilcoxon sign rank test comparing pairs of model correlations across neurons. (F) Residual error between model predictions and observed firing for stimuli that elicited large/small firing rates (identified by |z| scoring individual cell responses and selecting stimuli with |z| > 2). Where additive and multiplicative models are expected to differ in their predictions, asterisks represent statistical significance as in E.

Fig. 6. Objects with varying parts (experiment 5). (A) Observed responses for an example IT neuron for a set of objects with varying right parts (along columns) and left parts (along rows). Individual parts corresponding to each row and column are depicted but were never shown in the experiment. An example object is depicted in the first row, second column. FR, firing rate. (B) Predicted responses for the additive model for this neuron. (C) Observed response plotted against the additive model prediction across all 49 stimuli, with conventions as before. (D) Observed responses and multiplicative model predictions for two other IT neurons. (E) Mean and SEM of model correlation (normalized by firing reliability) across neurons for the multiplicative (red), additive (black), object-only (blue), and attribute-only (green) models. Asterisks indicate statistical significance on a Wilcoxon sign rank test comparing pairs of model correlations across neurons. (F) Residual error between model predictions and observed firing for stimuli that elicited large/small firing rates (identified by |z| scoring individual cell responses and selecting stimuli with |z| > 2). Where additive and multiplicative models are expected to differ in their predictions, asterisks represent statistical significance as in E.

specialized tasks. Testing this will require evaluating neural responses across different task contexts. Third, what are the underlying mechanisms? Both additive and multiplicative mixing can be accomplished using the neural mechanism of divisive normalization that is prevalent throughout visual cortex (29–31). Specifically, it has been shown in the context of attentional modulation that divisive normalization can result in a broad range of response modulations from additive to multiplicative (31).

Multiplicative separability is a common motif in many brain regions. It is best known in gain fields in parietal cortex (32), but it has been observed in auditory cortex (33) as well as in multiple visual areas for disparate features, such as motion/disparity (34) and orientation/disparity (35). While it is well-established that IT neurons are invariant to size, position, and viewpoint, the fact that object identity and attributes combine multiplicatively represents a unique finding. We have also shown that multiplicative separability is nontrivial in that it is absent in low-level visual representations and increases along successive layers of deep neural networks optimized for object classification. These findings show that multiplicative separability is an emergent property of neural networks optimized for object recognition. More generally, we propose that multiplicative separability emerges in the brain whenever multiple signals need to be combined while allowing for efficient decoding of either.

Methods

All animal experiments were performed according to a protocol approved by the Institutional Animal Ethics Committee of the Indian Institute of Science, Bangalore and the Committee for the Purpose of Control and Supervision of Experiments of Animals, Government of India. Most experimental procedures are similar to those reported in previous studies from our laboratory (36) and are, therefore, only briefly summarized below.

Neurophysiology. We recorded from the left IT cortex of two macaque monkeys (Macaca radiata; Ka and Sa, age 7 y old) using standard neurophysiological procedures detailed previously (36). Recording sites were verified using MRI to be in the anterior ventral portion of the IT cortex. Extracellular wideband signals were recorded at 40 KHz using 24-channel laminar electrodes (UProbe; 100-μm intercontact spacing; Plexon Inc.) linked to a neural data acquisition system (Plexon Inc.). These signals were manually sorted offline into distinct clusters using spike sorting software (OfflineSorter; Plexon Inc.). Only well-isolated visually responsive units were selected for further analyses. The numbers of recorded neurons in each experiment are reported below.

Behavioral Task. Each animal was trained to fixate a series of stimuli presented at the center of gaze. Each trial began after the animal fixated on a small red fixation dot (0.2°), after which eight stimuli were presented for 200 ms each with an interstimulus duration of 200 ms. Images within a trial were presented in random order with the constraint that no two images of an object occurred one after the other to avoid response adaptation. Error trials were repeated after a random number of other trials. Each stimulus was repeated about 8–11 times across trials. Monkeys received a juice reward at the end of each trial for successfully maintaining fixation throughout the trial.

Experiment 1: Objects Across Multiple Attributes. The stimuli in this experiment comprised 10 objects (5 animate, 5 inanimate) with images that were systematically varied in size, position, orientation, and viewpoint. Objects were equated across attributes by scaling, shifting, and rotating a reference image to have the same size, position, and orientation. All objects were chosen such that they had an impoverished view, at which most of their features were obscured, and an most elongated view, in which most of their features were visible. Each attribute had three levels, including the reference image. Thus, there were a total of nine unique images corresponding to each object, bringing the total number of stimuli to 90. This dataset has been reported in a recent study (37), but the analyses reported here are unique to this study. In all, we recorded the responses of 127 visually responsive neurons across two monkeys (83 from Ka, 44 from Sa), but for the analyses reported here, we selected a subset of 111 neurons with reliable firing (P < 0.05 for the correlation between firing rates estimated from even and odd trials).

Experiment 2: Objects Across y-Axis Rotations. The stimuli consisted of 10 objects (4 animate, 4 inanimate, 2 view-inconsistent objects), each presented...
in seven views. Of these, eight objects had an impoverished view, at which they were the least elongated in the horizontal direction and at which most of their features were obscured. We selected seven viewpoints for each object corresponding to rotations of ±60°, ±30°, ±15°, and 0° about the y axis relative to the impoverished view. The remaining two objects had two impoverished views that were at ±30° relative to the other objects. All stimuli were rendered using a 3D modeling software (Autodesk 3DS Max). We recorded from a total of 113 visual neurons in this experiment (49 from Ka, 64 from Sa), but for the analyses reported here, we selected a subset of 83 neurons with reliable firing (P < 0.05 for the correlation between firing rates estimated from even and odd trials).

Experiment 3: Objects Across Cardinal Axis Rotations. The stimuli comprised four objects rotated by several levels about each of the three cardinal axes. All objects were equated to have roughly the same 3D volume (and consequently, view relations). From the reference left profile view of each object, we rendered 60°, 120°, 180°, 240°, and 300° rotations about the x, y, and z axes using a 3D modeling software (Autodesk 3DS Max). We recorded from a total of 50 IT neurons in this experiment (42 from Ka, 8 from Sa), but for the analyses reported here, we selected a subset of 34 neurons with reliable firing (P < 0.05 for the correlation between firing rates estimated from even and odd trials).

Experiment 4: Faces Across Rotations in Depth. There were 160 stimuli in this experiment. The first 80 stimuli consisted of the face-object-body subset, which included 10 human faces, 10 animal faces, 20 objects, 10 human bodies, 10 animal bodies, 10 human body parts, and 10 monkey body parts. These stimuli were used to determine neural selectivity for faces, objects, and body parts (related analyses are in SI Text). The remaining 80 stimuli consisted of 16 human faces (6 females) photographed in five views corresponding to rotations of ±60°, ±120°, and 0° about the front-facing view. We recorded from 117 neurons in this experiment (97 from Ka, 20 from Sa), but for the analyses reported here, we selected a subset of 78 neurons with reliable firing (P < 0.05 for the correlation between firing rates estimated from even and odd trials).

Experiment 5: Objects Created by Combining Parts. There were 49 stimuli in this experiment. Each stimulus was an object created by adding two distinct parts on either side of a horizontal stem. The full stimulus set was created by combining seven possible parts on the left and right sides in all possible ways. We recorded from 180 neurons in this experiment (93 from Ka, 87 from Sa), but for the analyses reported here, we selected a subset of 144 neurons with more reliable firing (P < 0.05 for the correlation between firing rates estimated from even and odd trials). This dataset has been reported previously (38), but the analyses reported here are unique to this study.

Data Analysis. Single-neuron analysis of decoding (Fig. 1C). To compare multiplicative and additive mixing in terms of their ability to decode either property, we took single neurons with random (but identical) tuning functions for object and body parts (related analyses are in SI Text). The correlation between the firing rates estimated from even and odd trials).

Having obtained model predictions from neural responses on odd-numbered trials, we obtained a cross-validated measure of performance by calculating the Pearson’s correlation between these predictions with the firing rate on even-numbered trials. To estimate an upper bound on model performance, we calculated the correlation between the “split-half” correlation between the firing rates estimated from odd and even trials. We then obtained a normalized measure of model performance by dividing model correlation by the split-half correlation. A normalized correlation close to one indicates that the model explains nearly all of the explainable variance in the response. Model fitting for computational models. The above approach of training on odd trials and testing on even trials could not be used for computational models, because they produce identical responses with no trial variability. Therefore, we used a leave-one-out cross-validation procedure: we set aside the response to one stimulus each time and calculated the predicted response from all four models for this left-out response. In this manner, we compiled the response to all stimuli and then compared it with the observed response by calculating the correlation coefficient. We fit each model as before, but for the multiplicative model, it was not possible to perform SVD, since the response matrix was no longer square. We therefore calculated a normalized correlation between the split-half correlation between the firing rates estimated from odd and even trials. We then obtained a normalized measure of model performance by dividing model correlation by the split-half correlation. A normalized correlation close to one indicates that the model explains nearly all of the explainable variance in the response.

Multiplicative separability index. To compare multiplicative separability in computational models with that observed in IT neurons, we took the full neural response to objects across attributes and performed an SVD. The ratio of the first singular value to the sum of all singular values represents the fraction of the total variance explained by the first multiplicative outer product, and we took this to indicate the degree of multiplicative separability of the neural response. Specifically, the multiplicative separability index (SI) is given as

\[
SI = \frac{s_1}{\sum s_i}
\]

where \(s_1, s_2, \ldots, s_r\) are the singular values from the SVD of the response matrix \(R\). This index has a maximum value of one, which indicates complete separability.
Sparseness. To calculate a measure of object selectivity for each neuron, we used a standard measure of sparseness (15, 16). For a neuron with responses \(r_1, r_2, ..., r_n \) to \(n \) stimuli, the sparseness is given by \(s = 1 - \frac{1}{(\sum r_i/n)^2} \left(\sum r_i^2/n \right) - 1/n \) where the summation is across all responses. For an extremely sparse neuron that responds to only one stimulus in a set, the sparseness is one. For a broadly tuned neuron that responds equally to all stimuli, the sparseness is zero. Thus, a large value of sparseness indicates a more selective response. We calculated object selectivity for each neuron by taking its average response to objects (across attributes) and calculating sparseness. We obtained similar results using other measures of tuning.

Population decoding. To characterize the nature of information available in the neural population, we performed a population decoding analysis on single-trial neural responses. We took the firing rate of each neuron evoked during a 50- to 200-ms window after image onset as the value along each dimension of a multidimensional vector space. We trained a linear classifier on these response vectors corresponding to individual trials of each stimulus, with the class labels being either object or attribute. Note that this approach assumes that responses were recorded simultaneously, but this provides an upper bound on the information available to the entire population if recorded simultaneously. To measure the information contained about invariant object identity, we trained a classifier on responses to objects at one size and tested it on the responses at another size. This was done for all pairs of attributes to obtain an average decoding estimate.

ACKNOWLEDGMENTS. We thank Carl Olson for insightful comments; Zhivago, Pramod, Puneeth, and Harish for being an excellent recording team; and V. Ramesh of the Primate Research Laboratory for outstanding animal care. This research was funded by a Council for Scientific and Industrial Research Senior Research Fellowship (to N.A.R.M.) and an Intermediate Fellowship from the Wellcome Trust-Department of Biotechnology India Alliance and the Department of Biotechnology-Indian Institute of Science Partnership Programme (to S.P.A.).
Supporting Information

Ratan Murty and Arun 10.1073/pnas.1714287115

SI Text

Model Performance Vs. Firing Reliability. The results in the text are based on comparing the multiplicative and additive model correlation with neural firing normalized by firing rate reliability. This analysis could potentially obscure differences between how well these models perform on cells with more or less reliable firing. To investigate this issue, we plotted the model correlation for the multiplicative/additive model (i.e., the correlation between predicted firing rates derived from odd trials and the observed firing on even trials) against the firing rate reliability itself (i.e., the correlation between firing rates observed on odd and even trials). Indeed, the key results remained stable across cells with both low and high firing rate reliability: the multiplicative model was consistently better than the additive model for experiments 1–4, while the additive model was consistently better for experiment 5 (Fig. S1).

Objects with Inconsistent Viewpoint Relations. In experiment 2, we tested eight objects that were aligned to their impoverished view and found that IT neurons show multiplicative separability for object identity and viewpoint. What would happen for an object with qualitatively different relations between its views? To address this issue, we also tested the same neurons using two additional objects that had two viewpoints, at which they were impoverished in contrast to the other objects that had only one impoverished viewpoint.

To confirm that these two objects are indeed qualitatively different in their viewpoint relations compared with the remaining objects, we calculated the population dissimilarity for each pair of views using the correlation distance. Specifically, for each pair of views of a given object, we calculated the correlation between the responses across neurons and converted it into a correlation distance (1 − correlation). The resulting color maps (Fig. S2A) show neural dissimilarities between the views of each object. It can be seen that the consistent objects have qualitatively similar view–view relations, whereas the inconsistent objects are different from the rest. To quantify this, we calculated the correlation between these view–view relations for each pair of objects (Fig. S2B). The inconsistent objects had view–view relations that had a low similarity to the view–view relations of the consistent objects (Fig. S2C). This confirms our initial prediction that the two new objects are inconsistent with the other objects.

Having established that view relations are qualitatively different for the inconsistent objects, we predicted that multiplicative separability will hold only for objects that have similar viewpoint relations. To test this prediction, we compared model predictions between two groups of objects. The first group comprised two view-consistent objects and two additional view-inconsistent objects (Fig. S2D). We did this for all possible tetrads of objects. The second group comprised a subset of four view-consistent objects from the eight possible objects. Here too, we created all possible tetrads. We then compared the performance of the multiplicative, additive, object-only, and view-only models for each group. For the consistent groups of four objects, we confirmed our original finding that the multiplicative model yielded the best fit to the data (Fig. S2E). By contrast, the multiplicative model was equivalent to the object-only model for the view-inconsistent object groups (Fig. S2E), indicating that viewpoint tuning was not consistent within these objects.

We conclude that multiplicative separability holds only for objects with consistent view–view relations.

To further elucidate view relations across the view-consistent objects, we averaged the view–view dissimilarities across all eight objects. The resulting color map shows that adjacent views yielded similar responses on average, whereas the impoverished view was different from all others (Fig. S2F). However, we observed an additional interesting pattern: views that are mirror images were also similar to each other (Fig. S2F). This is consistent with the mirror confusion reported previously in IT neurons (1).

The finding that object identity and view tuning are separable in IT neurons suggests that neurons show consistent view tuning across objects. On plotting the distribution of view preferences across neurons (Fig. S2G), we found that the majority of neurons preferred the most elongated sideways view. This might be expected, since it is the brightest and contains the most features for these objects.

Cardinal Axis Rotations (Experiment 3). In experiment 3, we recorded from 50 neurons using objects rotated about all three cardinal axes. The stimuli consisted of four objects sampled along six rotations about each axis. The response of an example IT neuron to these stimuli is shown in Fig. S3A. Its response could again be predicted accurately by the multiplicative model (Fig. S3B) with a high degree of correlation (r = 0.92, P < 0.0005) (Fig. S3C). This model fit was close to the split-half reliability of its response (mean split-half correlation: 0.90). The median fraction of explained variance across the population was close to 1 (mean ± SD of ratio of model correlation and split-half correlation across 31 cells with a significant split-half correlation: 0.95 ± 0.03 across 34 cells with reliable firing between odd and even trials). As before, the multiplicative model outperformed the additive, object-only, and view-only models both in terms of normalized correlation (Fig. S3D) as well as in terms of residual error (Fig. S3E). We conclude that neural responses to objects across cardinal axis rotations are explained best by a product of tuning for object identity and tuning for viewpoint.

Faces Across Many Views (Experiment 4). In experiments 2 and 3, we have shown multiplicative separability in IT neurons for diverse objects with consistent view relations. Here, we investigated the effect of object structure further by testing multiplicative separability for objects with highly stereotyped structure, which made view alignment trivial. In experiment 4, we tested 117 IT neurons on faces across many views. Note that these were face-responsive neurons in IT cortex, since we did not explicitly target face patches.

Multiplicative separability of face and view. The response of an example IT neuron is shown in Fig. S4A. This neuron preferred faces in the right-facing profile and oblique views. Here too, the multiplicative model yielded an excellent fit to the neural response (Fig. S4B), with a correlation of 0.88, P < 0.0005 (Fig. S4C). This model fit was close to the split-half reliability of its response (mean split-half correlation: 0.89). The responses of three other example IT neurons also illustrate the high agreement observed and predicted responses (Fig. S4D). However, unlike other experiments, the dominant effect across neurons was view and not object modulation. This was evident in an ANOVA on the firing rates across trials with object (16 levels) and view (5 levels as factors): 3 of 102 cells showed object-only modulation, whereas 42 of 102 cells showed view-only modulation. To ensure that cells were modulated by face identity, we selected a subset of 74 cells with a slight tendency toward
object modulation in the object \(\times \) view ANOVA (\(P < 0.5 \) for object main effect) and with reliable firing (\(P < 0.05 \) for correlation between firing rates from even and odd trials).

Across these neurons, the median fraction of explained variance across the population was close to 1 (mean \(\pm \) SD of ratio of model correlation and split-half correlation across 77 cells with a significant split-half correlation: 1.16 \(\pm \) 0.03). Compared with all other models, we found that the multiplicative model fits were significantly better than the object and view-only models but were equivalent to the additive model in terms of normalized correlation (Fig. S4E). However, the multiplicative model yielded smaller residual errors for large/small firing rates compared with all models (Fig. S4F). We conclude that the multiplicative model explained neural responses to faces across views.

Additional analyses of face-responsive IT neurons. In addition to investigating the performance of the multiplicative model on the responses to face stimuli, we also analyzed the preference of the visual neurons to different object categories apart from faces and the representation of face stimuli. We included in this experiment an additional set of images [face–object–body (FOB) stimuli or FOB set] with object categories, such as faces (human and animal faces), fruits, objects, monkey (whole and individual) body parts, and human (whole and individual) body parts (Methods has more details). The responses of neurons to this set of stimuli are presented in Fig. S5. To assess the average normalized response to the categories across neurons is presented in Fig. S5A.

First, we analyzed the selectivity of neurons to each of the stimuli categories relative to objects. To do so, we measured the selectivity index as a modulation index of the form (A – B/A + B), where A is average response to all stimuli of a category (e.g., face, human body, animal body, and so on) and B is the average response to all 10 object stimuli. The neurons in Fig. S5A are sorted by decreasing human face selectivity index. From the color map, it is apparent that a number of neurons responded selectively to human faces. We asked whether neurons that respond to human faces also respond selectively to animal faces. To test this, we plotted the human–face selectivity index vs. the animal–face selectivity index, and we observed that the indices were highly correlated (\(r = 0.66, P < 0.00005 \)) (Fig. S5C). Thus, neurons selective for human faces were also selective for animal faces.

Second, we asked whether neurons that responded selectively to human body parts also responded selectively to monkey body parts by plotting the human and animal body selectivity indices. Here too, these measures were significantly correlated across neurons (\(r = 0.36, P < 0.00005 \)) (Fig. S5D).

We then investigated whether neurons that responded selectively to human faces also responded selectively to human body parts. We tested this by correlating human face selectivity index and human body selectivity index and found that the two measures were, in fact, significantly negatively correlated across neurons (\(r = -0.48, P < 0.00005 \)) (Fig. S5E). Thus, face-selective neurons do not respond to body parts, and body-selective neurons are unresponsive to faces.

We then proceeded to investigate the representation of the faces \(\times \) views set across all of the recorded neurons. To this end, we measured the pairwise dissimilarity between stimuli as 1 – correlation across neurons. This is plotted for all neurons as a dissimilarity matrix arranged by face views across identities in Fig. SSF. In this plot, the cooler shades indicate high similarity and the warmer shades indicate high dissimilarity between pairs of stimuli. The resulting plot in Fig. SSF shows that there is, in fact, a grouping within face views. Across all neurons, we find that the responses are similar within the left-facing views (profile and oblique), within the front-facing view, and within the right-facing views (profile and oblique). Thus, the responses were not face variant in this recorded population. Next, we performed an ANOVA on the responses with face identity and view as factors and repeated the analyses on cells that exhibited significant face identity and view main effects. The dissimilarity matrix for these neurons (\(n = 51 \) neurons) also shows similar grouping for face views (Fig. S5G). We also performed the same analysis on the group of cells that responded maximally to the profile (left or right) face views. The dissimilarity matrix for these neurons (Fig. SSF) also showed similar grouping for face views. The distribution of the number of neurons that responded maximally to the profile (left- or right-facing) face view, oblique (left- or right-facing) view, and front view is shown in Fig. SSF. Thus, most neurons prefer the profile views and not the front-facing views of faces.

Mixed Additive and Multiplicative Models. To investigate the possibility that single neurons might implement a continuum of signal integration ranging from multiplicative to additive signal mixing, we fit a mixed model to the responses of each neuron, with responses given by \(R = aR_a + mR_m \), where \(R_a \) and \(R_m \) are the additive and multiplicative predictions, respectively, and \(a \) and \(m \) are scalars representing their contributions. A purely multiplicative response would have \(a = 0 \), whereas a purely additive response would have \(m = 0 \).

To quantify for each neuron the degree to which its signal integration was multiplicative, we calculated a multiplicative mixing index as \(|m|/(|a| + |m|) \). This index can range from zero, representing purely additive mixing, to one, representing purely multiplicative mixing. The histogram of the multiplicative mixing index is shown in Fig. S6 for experiments 1–5. The median multiplicative mixing index was significantly larger than 0.5 for experiments 1–4, indicating again that multiplicative term contributed more than the additive model (\(P < 0.05 \) for experiments 1–4). This pattern was different in experiment 5: here, the additive and multiplicative terms contributed equally (median index = 0.52, \(P = 0.73 \) on a sign rank test comparing the median with 0.5).

Computational Models. We evaluated computational models on the stimuli of experiments 1–4 to assess the presence and extent of multiplicative separability.

V1 model. We tested a V1 model to determine whether multiplicative separability is present in low-level visual representations. The V1 model consisted of Gabor Filters at six spatial frequencies and eight orientations centered at each pixel along with input and output divisive normalization (2). For the V1 model, we used a scaling factor of 18.2 pixels per degree of visual angle. We rescaled the images so that the images seen by the V1 model matched the image sizes in our experiment. The output of the response to the model units to an image was used as the feature vector for the analysis.

Deep convolutional neural network. We tested a deep convolutional neural network (CNN) optimized for object classification (ref. 3; VGG-16; www.vlfeat.org/matconvnet/pretrained). This model had 37 layers in all—these included 16 convolutional levels, 15 nonlinearity levels, 5 maximum-pooling layers, and 1 soft-maximum layer. We used a pretrained network for VGG-16 available at www.vlfeat.org/matconvnet/pretrained. The network was trained on the ImageNet to classify 1,000 image categories with \(~1.3\) million training images, with 50,000 images set aside for validation and another 100,000 images set aside for testing (3). For the face experiment, we chose a face-specific pretrained network described in the work by Parkhi et al. (4) (vgg-face; downloaded from www.vlfeat.org/matconvnet/pretrained). More specifically, this network has 21 layers—8 convolutional levels, 7 nonlinearity levels, 2 normalization levels, and 1 soft-maximum level. This network was trained on \(~2.6\) million faces to categorize 2,622 unique individuals. We used the features from each level to measure the correlation
between the dissimilarities estimated from the layer and the observed dissimilarities from IT neurons. For each experiment, we chose the model layer with overall dissimilarity that best matched with the neural dissimilarity across IT neurons.

Model evaluation. For each model, we took the individual unit activations as neural activity and performed a similar analysis as with the real data. However, we could not use the split-half approach, because model unit activations do not vary across trials. Instead, we assessed model quality of fit using a leave-one-out procedure. Specifically, we fit the multiplicative model on all trials except for a held-out trial by calculating its average response to objects (across attributes) and multiplying it by the average response to attributes (across objects). We then compared its prediction on each left-out trial. We proceeded analogously for the additive, object-only, and attribute-only models. This allowed us to compare model performance for all four models on an equal footing.

The difference in model evaluation for real data (where we compared split-half predictions) and for the computational models (where we performed leave-one-out cross-validation) means that the absolute value of model performance cannot be compared between the V1 model, CNN units, and IT neurons. To obtain a comparable number for both IT neurons and computational models, we defined a multiplicative separability index on the full response to objects across attributes using SVD. This index, calculated as the ratio of the first singular value to the sum of all singular values of the response matrix, indicates the amount of variance explained by the multiplicative model compared with the total variance in the data.

Results. We compared the overall representations of the experiment 1 stimuli by calculating dissimilarity relations between all pairs of images in each model. Specifically, we calculated the dissimilarity for each pair of images as $1 - \rho$, where ρ is the correlation between the neural activity (across all units) evoked by the two images. The resulting dissimilarity matrices for the V1 model, CNN, and IT neurons are shown in Fig. S7 A–C. In these color maps, low values of dissimilarity parallel to the main diagonal represent invariant responses, because these correspond to the same object across changing attributes. It can be seen that the CNN and IT representations are much more invariant compared with V1. Next, we compared the multiplicative separability for V1, CNN, and IT neurons (Fig. S7D). Multiplicative separability was equally strong for CNN and IT representations, but these were larger than V1. We then compared the performance of the multiplicative, additive, object-only, and attribute-only models across all model units. V1 model units were better explained using the additive model (Fig. S7E). In contrast, CNN model units were better explained using both the additive and multiplicative models (Fig. S7F). The results for IT neurons are repeated again from the text for comparison (Fig. S7G).

In the above results, we presented the results of the CNN layer that best matched the IT representation. We identified this layer by calculating correlation between the IT pairwise dissimilarities and CNN dissimilarities for each layer. This dissimilarity increased nearly monotonously (Fig. S7H), suggesting that IT neurons are homologous to the final layers of the deep neural network. Concordantly, we found that both the average separability index (Fig. S7I) and multiplicative model performance (Fig. S7J) increased from early to late layers. Multiplicative model performance alternated from low to high across layers, presumably due to the alternate pooling and maximum operations in the network architecture. We obtained similar results on evaluating model representations for experiment 2 (Fig. S8), experiment 3 (Fig. S9), and experiment 4 (Fig. S10).

In sum, we conclude that (i) low-level visual representations show largely additive and not multiplicative separability, (ii) deep neural networks pretrained for object classification show increasing multiplicative separability across layers, and (iii) IT neurons show generally stronger multiplicative separability compared with both V1 and CNN models. Thus, multiplicative separability is nontrivial and seems to be an emergent computational property required for invariant object recognition.

Fig. S1. Model performance vs. firing rate reliability. (A) Model correlation for the multiplicative model (red) and additive model (black) plotted against the firing rate reliability for each neuron in experiment 1 across neurons with significant firing rate variability ($P < 0.05$). Multiplicative and additive model predictions for each neuron are connected by straight lines. These lines are colored red when the multiplicative model correlation was larger than the additive model for that neuron and colored black when vice versa. The predominance of red lines in the plot reiterates the finding that the multiplicative model performed better than the additive model. (B–D) Similar plots for experiments 2–4. (E) Similar plot for experiment 5. Here, the predominance of black lines reflects the finding that the additive model performs better than the multiplicative model.
Fig. 52. View relations across objects. (A) Population dissimilarities between all pairs of views for the eight view-consistent objects and two view-inconsistent objects in experiment 2. (B) Agreement between view relations for all possible pairs of objects. Each entry in the depicted matrix is the correlation between the corresponding matrices shown in A. (C) Average agreement between each object with all other objects for the view-consistent objects (black bars) and view-inconsistent objects (gray bars) calculated by averaging along columns of the color map in B. Error bars indicate the SEM calculated across objects. (D) Example view-inconsistent object group and example view-consistent object group used to evaluate model performance for view-consistent and view-inconsistent groups of objects. (E) Model performance for the multiplicative (red), additive (black), object-only (blue), and view-only models (green) for the view-consistent and view-inconsistent object groups across neurons. Error bars indicate the SEM across neurons. Asterisks indicate statistical significance on a Wilcoxon sign rank test across neurons; n.s. is not significant (i.e., $P > 0.05$). ***$P < 0.0005$; ****$P < 0.00005$. (F) Average view-view dissimilarities (1 – correlation) across all consistent objects. (G) Histogram of viewpoint preferences across the recorded population.
Fig. S3. Objects across cardinal axis rotations (experiment 3). (A, Lower Right) Observed responses for an example IT neuron across objects (along rows) and various cardinal axis rotations (along columns). (A, Upper) Responses to objects across attributes and (A, Left) responses to attributes across objects. (B) Predicted responses for the multiplicative model for this neuron. FR, firing rate. (C) Observed response plotted against predicted response across all 90 stimuli. Asterisks indicate statistical significance, and the solid line is the best-fitting line. ****P < 0.00005. (D) Mean and SEM of model correlation (normalized by firing reliability) across neurons for the multiplicative (red), additive (black), object-only (blue), and attribute-only (green) models. Asterisks indicate statistical significance on a Wilcoxon sign rank test comparing pairs of model correlations across neurons. *P < 0.05; ***P < 0.0005; ****P < 0.00005. (E) Residual error between model predictions and observed firing for stimuli that elicited large/small firing rates (identified by z scoring individual cell responses and selecting stimuli with |z| > 2), where additive and multiplicative models are expected to differ in their predictions. Asterisks represent statistical significance as before. **P < 0.005; ****P < 0.00005.
Fig. S4. Faces across views (experiment 4). (A, Lower Right) Observed responses for an example IT neuron across faces (along columns) at various views (along rows). (A, Upper) Responses to viewpoints across faces and (A, Left) responses to faces across viewpoints. FR, firing rate. (B) Predicted responses for the multiplicative model for this neuron. (C) Observed response plotted against predicted response across all 90 stimuli. Asterisks indicate statistical significance, and the solid line is the best-fitting line. **** is \(P < 0.00005 \). (D) Observed responses and multiplicative model predictions for three other IT neurons. **** is \(P < 0.00005 \). (E) Mean and SEM of model correlation (normalized by firing reliability) across neurons for the multiplicative (red), additive (black), object-only (blue), and attribute-only (green) models. Asterisks indicate statistical significance on a Wilcoxon sign rank test comparing pairs of model correlations across neurons. ** \(P < 0.005 \); *** \(P < 0.0005 \); **** \(P < 0.00005 \). (F) Residual error between model predictions and observed firing for stimuli that elicited large/small firing rates (identified by \(z \) scoring individual cell responses and selecting stimuli with \(|z| > 2 \)), where additive and multiplicative models are expected to differ in their predictions. Asterisks represent statistical significance as before. ** \(P < 0.005 \); *** \(P < 0.0005 \); **** \(P < 0.00005 \).
Fig. 55. Additional analyses for experiment 4. (A) Color map indicating the responses of all neurons recorded and indicating the responses to the FOB set of stimuli. The neurons have been sorted by increasing face selectivity index (SI Text). (B) Bar plots indicating the mean normalized responses to all classes of stimuli in the FOB set. The stimuli classes included human and animal faces, fruits, objects, monkey part and whole body parts, and human part and whole body parts. The error bars indicate the SEM across neurons. (C) Scatterplot between the human body selectivity index and the human face selectivity index across all neurons. All other conventions are same as C. ****P < 0.00005. (D) Scatterplot between animal face selectivity index and the human face selectivity index across all neurons. All other conventions are same as C. ****P < 0.00005. (E) Scatterplot between animal body selectivity index and the human body selectivity index across all neurons. All other conventions are same as C. ****P < 0.00005. (F) Color map showing the dissimilarities between stimuli in the face set across all neurons (n = 117 neurons). (G) Same as F but for neurons that show main effects of both face identity and view. (H) Same as F but for neurons that preferred the side-facing profile view. (I) Distribution of the preference of neurons for the views.
Fig. S6. Mixed model for experiments 1–5. (A) Histogram of multiplicative mixing index across all neurons in experiment 1. The median value is indicated for each experiment using triangles. (B–E) Similar plots for experiments 2–5. (F) Cumulative probability of the multiplicative mixing index for experiments 1–5. It can be seen that experiment 5 (green) has a different distribution compared with the others.
Fig. S7. Computational models for experiment 1. (A) Dissimilarity between all pairs of stimuli for the V1 model. (B) Same as A but for the deep neural network (DNN) model layer 31 (which was the best match to the overall IT dissimilarities). (C) Same as A but for observed responses in IT neurons. (D) Average separability indices (mean ± SEM) for the V1 model, DNN model layer 31, and IT neurons. Asterisks indicate statistical significance calculated using a Wilcoxon rank sum test across neurons (or model units). ****p < 0.00005. (E) Model correlation obtained using leave-one-out cross-validation for the multiplicative (red), additive (black), object-only (blue), and attribute-only (green) models for the V1 model units. Error bars indicate the SEM across model units. Asterisks indicate statistical significance calculated using a Wilcoxon sign rank test comparing pairs of model correlations across neurons. **p < 0.005; ****p < 0.00005. (F) Same as E but for DNN units; n.s. is not significant (i.e., p > 0.05). **p < 0.005; ****p < 0.00005. (G) Bar plot showing model performance evaluated using split-half cross-validation for the multiplicative, additive, object-only, and attribute-only models on IT neuronal responses. All other conventions as same as E. **p < 0.005; ****p < 0.00005. (H) Correlation between pairwise dissimilarities between stimuli in each layer of the VGG-16 network and the IT pairwise dissimilarities. The black line is the best-fitting least squares line. ****p < 0.00005. (I) Separability index across all of the VGG-16 layers. The black line is the best-fitting least squares line. ****p < 0.00005. (J) Multiplicative model performance (red dots) and additive model performance (black dots) across all of the VGG-16 model layers. The red and black lines are the best-fitting lines for the multiplicative and additive models, respectively. ****p < 0.00005.

Ratan Murty and Arun
Fig. S8. Computational models for experiment 2. (A–J) Comparison of V1 and deep neural network (DNN) representations with IT data for experiment 2 (objects across many views). All conventions are as in Fig. S7; n.s. is not significant (i.e., $P > 0.05$). *$P < 0.05$; **$P < 0.005$; ***$P < 0.0005$; ****$P < 0.00005$.

Ratan Murty and Arun
Fig. S9. Computational models for experiment 3. (A–J) Comparison of V1 and deep neural network (DNN) representations with IT data for experiment 2 (objects across cardinal axis rotations). All conventions are as in Fig. S7. **P < 0.005; ***P < 0.0005; ****P < 0.00005.
Fig. S10. Computational models for experiment 4. (A–J) Comparison of V1 and deep neural network (DNN) representations with IT data for experiment 2 (faces across many views). Here, the DNN used is a DNN specifically trained for face recognition. All conventions are as in Fig. S7; n.s. is not significant (i.e., $P > 0.05$). **** $P < 0.00005$.